Pain Heads | Part 1: Apkar Vania Apkarian

Apkar Vania Apkarian is a is a professor of neuroscience at Northwestern University. He is a pioneer in the field of pain research, specifically looking at the brain. Dr. Apkarian studies the cortical dynamics underpinning the experience of pain, seeking to discover mechanisms that can be targeted. He has identified changes in structure and function of the brain in chronic pain states.

Dr Apkarian’s work influences my clinical therapies through the understanding of how the brain changes and the role of the immune system in persisting pain states. Clearly we need to address tissue health with movement, but we must also look at the role of the brain and how we can change this by accessing its plastic ability.

Specialist Pain Physio Website

Here is some of his work:

Neurosci Lett. 2012 May 8. [Epub ahead of print]

A dynamic network perspective of chronic pain.

Farmer MA, Baliki MN, Apkarian AV.

Abstract

We briefly summarize recent advances regarding brain functional representation of chronic pain, reorganization of resting state brain activity, and of brain anatomy with chronic pain. Based on these observations and recent theoretical advances regarding network architecture properties, we develop a general concept of the dynamic interplay between anatomy and function as the brain progresses into persistent pain, and outline the role of mesolimbic learning mechanisms that are likely involved in maintenance of chronic pain.

++++++++++

Mol Pain. 2012 Apr 24;8(1):29. [Epub ahead of print]

Lidocaine patch (5%) is no more potent than placebo in treating chronic back pain when tested in a randomised double blind placebo controlled brain imaging study.

Hashmi JA, Baliki M, Chanda ML, Huang L, Parks E, Schnitzer T, Apkarian V.

Abstract

ABSTRACT: The 5% Lidocaine patch is used for treating chronic neuropathic pain conditions such as chronic back pain (CBP), diabetic neuropathy and complex regional pain syndrome, but is effective in a variable proportion of patients. Our lab has reported that this treatment reduces CBP intensity and associated brain activations when tested in an open labelled preliminary study. Notably, effectiveness of the 5% Lidocaine patch has not been tested against placebo for treating CBP. In this study, effectiveness of the 5% Lidocaine patch was compared with placebo in 30 CBP patients in a randomised double-blind study where 15 patients received 5% Lidocaine patches and the remaining patients received placebo patches. Functional MRI was used to identify brain activity for fluctuations of spontaneous pain, at baseline and at two time points after start of treatment (6 hours and 2 weeks). There was no significant difference between the treatment groups in either pain intensity, sensory and affective qualities of pain or in pain related brain activation at any time point. However, 50% patients in both the Lidocaine and placebo arms reported a greater than 50% decrease in pain suggesting a marked placebo effect. When tested against an untreated CBP group at similar time points, the patch treated subjects showed significantly greater decrease in pain compared to the untreated group (n=15). These findings suggest that although the 5% Lidocaine is not better than placebo in its effectiveness for treating pain, the patch itself induces a potent placebo effect in a significant proportion of CBP patients.

++++++++++

Pain. 2011 Dec;152(12):2827-35. Epub 2011 Oct 26.

Chronic neuropathic pain-like behavior correlates with IL-1β expression and disrupts cytokine interactions in the hippocampus.

del Rey A, Yau HJ, Randolf A, Centeno MV, Wildmann J, Martina M, Besedovsky HO, Apkarian AV.
Abstract

We have proposed that neuropathic pain engages emotional learning, suggesting the involvement of the hippocampus. Because cytokines in the periphery contribute to induction and maintenance of neuropathic pain but might also participate centrally, we used 2 neuropathic pain models, chronic constriction injury (CCI) and spared nerve injury (SNI), to investigate the temporal profile of hippocampal cytokine gene expression in 2 rat strains that show different postinjury behavioral threshold sensitivities. SNI induced long-lasting allodynia in both strains, while CCI induced allodynia with time-dependent recovery in Sprague Dawley (SD) and no allodynia in Wistar Kyoto (WK) rats. In WK rats, only SNI induced sustained upregulation of hippocampal interleukin (IL)-1β, while IL-6 expression was transiently increased and no significant changes in IL-1ra expression were detected. Conversely, in SD rats, SNI resulted in sustained and robust increased hippocampal IL-1β expression, which was only transient in rats with CCI. In this strain, IL-6 expression was not affected in any of the 2 injury models and IL-1ra expression was significantly increased in rats with SNI or CCI at late phases. We found that the degree and development of neuropathic pain depend on the specific nerve injury model and rat strain; that hippocampal IL-1β mRNA levels correlate with neuropathic pain behavior; that, in contrast to sham-operated animals, there are no correlations between hippocampal IL-1β and IL-1ra or IL-6 in neuropathic rats; and that alterations in cytokine expression are restricted to the hippocampus contralateral to the injury side, again implying that the observed changes reflect nociception.

++++++++++

J Neurosci. 2011 Sep 28;31(39):13981-90.

The cortical rhythms of chronic back pain.

Baliki MN, Baria AT, Apkarian AV.
Abstract

Chronic pain is maladaptive and influences brain function and behavior by altering the flow and integration of information across brain regions. Here we use a power spectral analysis to investigate impact of presence of chronic pain on brain oscillatory activity in humans. We examine changes in BOLD fluctuations, across different frequencies, in chronic back pain (CBP) patients (n = 15) as compared to healthy controls (n = 15) during resting-state fMRI. While healthy subjects exhibited a specific, frequency band-dependent, large-scale neural organization, patients showed increased high-frequency BOLD oscillations (0.12-0.20 Hz) circumscribed mainly to medial prefrontal cortex (mPFC) and parts of the default mode network. In the patients a correlation analysis related the mPFC aberrant BOLD high-frequency dynamics to altered functional connectivity to pain signaling/modulating brain regions, thus linking BOLD frequency changes to function. We also found that increased frequency fluctuations within the mPFC were temporally synchronous with spontaneous pain changes in patients during a pain-rating task. These observations provide novel insights about the nature of CBP, identifying how it disturbs the resting brain, and link high-frequency BOLD oscillations to perception.

++++++++++

J Urol. 2011 Jul;186(1):117-24. Epub 2011 May 14.

Brain functional and anatomical changes in chronic prostatitis/chronic pelvic pain syndrome.

Farmer MA, Chanda ML, Parks EL, Baliki MN, Apkarian AV, Schaeffer AJ.
Abstract

PURPOSE:

Research into the pathophysiology of chronic prostatitis/chronic pelvic pain syndrome has primarily focused on markers of peripheral dysfunction. We present the first neuroimaging investigation to our knowledge to characterize brain function and anatomy in chronic prostatitis/chronic pelvic pain syndrome.

MATERIALS AND METHODS:

We collected data from 19 male patients with chronic prostatitis/chronic pelvic pain syndrome, and 16 healthy age and gender matched controls. Functional magnetic resonance imaging data were obtained from 14 patients with chronic prostatitis/chronic pelvic pain syndrome as they rated spontaneous pain inside the scanner. Group differences (16 patients per group) in gray matter total volume and regional density were evaluated using voxel-based morphometry, and white matter integrity was studied with diffusion tensor imaging to measure fractional anisotropy. Functional and anatomical imaging outcomes were correlated with the clinical characteristics of chronic prostatitis/chronic pelvic pain syndrome.

RESULTS:

Spontaneous pelvic pain was uniquely characterized by functional activation within the right anterior insula, which correlated with clinical pain intensity. No group differences were found in regional gray matter volume, yet density of gray matter in pain relevant regions (anterior insula and anterior cingulate cortices) positively correlated with pain intensity and extent of pain chronicity. Moreover the correlation between white matter anisotropy and neocortical gray matter volume was disrupted in chronic prostatitis/chronic pelvic pain syndrome.

CONCLUSIONS:

We provide novel evidence that the pain of chronic prostatitis/chronic pelvic pain syndrome is associated with a chronic pelvic pain syndrome specific pattern of functional brain activation and brain anatomical reorganization. These findings necessitate further investigations into the role of central mechanisms in the initiation and maintenance of chronic prostatitis/chronic pelvic pain syndrome.

++++++++++

Eur J Pain. 2011 Sep;15(8):843.e1-14. Epub 2011 Feb 10.

Brain activity for chronic knee osteoarthritis: dissociating evoked pain from spontaneous pain.

Parks EL, Geha PY, Baliki MN, Katz J, Schnitzer TJ, Apkarian AV.
Abstract

Chronic pain is a hallmark of osteoarthritis (OA), yet little is known about its properties and representation in the brain. Here we use fMRI combined with psychophysics to study knee pain in fourteen OA patients and nine healthy controls. Mechanical painful pressure stimuli were applied to the knee in both groups and ratings of evoked pain and related brain activity examined. We observe that psychophysical properties and brain activation patterns of evoked pain are essentially the same between OA patients and healthy subjects, and between worse and better OA knees. In OA patients, stimulus-related brain activity could be distinguished from brain activity associated with spontaneous pain. The former activated brain regions commonly observed for acute painful stimuli in healthy subjects, while the spontaneous pain of OA engaged prefrontal-limbic regions closely corresponding to areas observed for spontaneous pain in other chronic pain conditions, such as chronic back pain and post-herpetic neuralgia. Arthritis-related clinical characteristics of knee OA also mapped to prefrontal-limbic regions. In a subgroup of patients (n=6) we examined brain activity changes for a 2-week, repeat measure, cyclooxygenase-2 inhibitor (valdecoxib) therapy. Treatment decreased spontaneous pain for the worse knee and clinical characteristics of OA, and increased blood and csf levels of the drug which correlated positively with prefrontal-limbic brain activity. These findings indicate dissociation between mechanically induced and spontaneous OA knee pain, the latter engaging brain regions involved in emotional assessment of the self, and challenge the standard clinical view regarding the nature of OA pain.

++++++++++

Neuron. 2008 Nov 26;60(4):570-81.

The brain in chronic CRPS pain: abnormal gray-white matter interactions in emotional and autonomic regions.

Geha PY, Baliki MN, Harden RN, Bauer WR, Parrish TB, Apkarian AV.
Abstract

Chronic complex regional pain syndrome (CRPS) is a debilitating pain condition accompanied by autonomic abnormalities. We investigated gray matter morphometry and white matter anisotropy in CRPS patients and matched controls. Patients exhibited a disrupted relationship between white matter anisotropy and whole-brain gray matter volume; gray matter atrophy in a single cluster encompassing right insula, right ventromedial prefrontal cortex (VMPFC), and right nucleus accumbens; and a decrease in fractional anisotropy in the left cingulum-callosal bundle. Reorganization of white matter connectivity in these regions was characterized by branching pattern alterations, as well as increased (VMPFC to insula) and decreased (VMPFC to basal ganglion) connectivity. While regional atrophy differentially related to pain intensity and duration, the strength of connectivity between specific atrophied regions related to anxiety. These abnormalities encompass emotional, autonomic, and pain perception regions, implying that they likely play a critical role in the global clinical picture of CRPS.

++++++++++

Prog Neurobiol. 2009 Feb;87(2):81-97. Epub 2008 Oct 5.

Towards a theory of chronic pain.

Apkarian AV, Baliki MN, Geha PY.
Abstract

In this review, we integrate recent human and animal studies from the viewpoint of chronic pain. First, we briefly review the impact of chronic pain on society and address current pitfalls of its definition and clinical management. Second, we examine pain mechanisms via nociceptive information transmission cephalad and its impact and interaction with the cortex. Third, we present recent discoveries on the active role of the cortex in chronic pain, with findings indicating that the human cortex continuously reorganizes as it lives in chronic pain. We also introduce data emphasizing that distinct chronic pain conditions impact on the cortex in unique patterns. Fourth, animal studies regarding nociceptive transmission, recent evidence for supraspinal reorganization during pain, the necessity of descending modulation for maintenance of neuropathic behavior, and the impact of cortical manipulations on neuropathic pain is also reviewed. We further expound on the notion that chronic pain can be reformulated within the context of learning and memory, and demonstrate the relevance of the idea in the design of novel pharmacotherapies. Lastly, we integrate the human and animal data into a unified working model outlining the mechanism by which acute pain transitions into a chronic state. It incorporates knowledge of underlying brain structures and their reorganization, and also includes specific variations as a function of pain persistence and injury type, thereby providing mechanistic descriptions of several unique chronic pain conditions within a single model.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s